Type 1644 Megohm Bridge

User and Service Manual

New Products
Find a Product
Technical Applications
Request a Quote
Price List
Place an Order
Request a Catalog
Contact Us
About IET
If you need products or
service by Genrad, esi,
Biddle, or others.

STANDARDS, DECADES STROBES

Formerly Manufactured By: QuadTech/GenRad(General Radio)

Now being manufactured, serviced, calibrated, and fully supported by IET LABS

COST-EFFECTIVE QUALITY STANDARD OR CUSTOM SOLUTION

R-L-CRTDVOLTAGE CURRENT॰PROCESS CONTROL

Product Area of Interest

Widest Choice of Decades

IET is compliant with ISO 9001, ISO/IEC 17025, ANSI Z540-1-1994, and MIL-STD-45662A

Galibration Test Measurement Metrology

Find a Products | Technical Applications | Request a Quote | Place an Order | Free Offer | Request a Catalog | Contact Us
© Copyright 1999-2001 IET Labs, Inc. All rights reserved.
Problems or Comments? Contact webmaster@ietlabs.com

To navigate our easy to use website for quick access to specifications and prices:

1. Select Find a Product to go to a convenient scrolling thumbnail catalog and then to detailed data sheets as desired; or:
2. Select STANDARDS DECADES STROBES for products formerly manufactured by GenRad (General Radio) or QuadTech.

Since 1976, IET labs has had a long-standing commitment to conform the instruments and standards we offer to the customer's needs rather than to have the customer settle for what is available. We devote our customer service and applications entirely to the customer's satisfaction in the quality standards, test instruments and calibration service we provide.

- Combinations of functions, special ranges, ratings, or accuracies.
- Replacement for discontinued models from other manufacturers.
- Calibration and repair services - NIST traceable.
- Compliant with ISO 9001, ISO 17025, ANSI Z540-1-1994, and MIL-STD-45662A.

Capabilities

- R: $20 \mu \Omega-1 \mathrm{~T} \Omega$
- $\mathbf{C}:<1 \mathrm{pF}-1 \mathrm{~F}$
- L: $100 \mu \mathrm{H}-100 \mathrm{H}$
- Accuracy to 1 ppm
- Resolution to 0.1 ppm
- Voltage to 20 kV
- Power to over 1000 W
- Programmable IEEE-488 or BCD

The World Standard in Metrology Since 1915 Now continuing the GenRad tradition

Featuring instruments formerly manufactured by GenRad/General Radio/QuadTech

WARRANTY

We warrant that this product is free from defects in material and workmanship and, when properly used, will perform in accordance with applicable IET specifications. If within one year after original shipment, it is found not to meet this standard, it will be repaired or, at the option of IET, replaced at no charge when returned to IET. Changes in this product not approved by IET or application of voltages or currents greater than those allowed by the specifications shall void this warranty. IET shall not be liable for any indirect, special, or consequential damages, even if notice has been given to the possibility of such damages.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTIBILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

WARNING

OBSERVE ALL SAFETY RULES WHEN WORKING WITH HIGH VOLTAGES OR LINE VOLTAGES.

Dangerous voltages may be present inside this instrument. Do not open the case Refer servicing to qulified personnel

HIGH VOLTAGES MAY BE PRESENT AT THE TERMINALS OF THIS INSTRUMENT
WHENEVER HAZARDOUS VOLTAGES (> 45 V) ARE USED, TAKE ALL MEASURES TO AVOID ACCIDENTAL CONTACT WITH ANY LIVE COMPONENTS.

USE MAXIMUM INSULATION AND MINIMIZE THE USE OF BARE CONDUCTORS WHEN USING THIS INSTRUMENT.

Use extreme caution when working with bare conductors or bus bars.
WHEN WORKING WITH HIGH VOLTAGES, POST WARNING SIGNS AND KEEP UNREQUIRED PERSONNEL SAFELY AWAY.

Resistance Range: $1 \mathrm{k} \Omega$ to $1000 \mathrm{~T} \Omega$ (10^{3} to $10^{15} \Omega$) in ten ranges. Accuracy: $10^{3} \Omega$ to $10^{10} \Omega, \pm 1 \%$. After self-calibration: 10^{10} to $10^{12} \Omega, \pm 1 \%{ }^{*} ; 10^{13} \Omega, \pm 2 \% ; 10^{14} \Omega, \pm 10 \% ; 10^{1 s} \Omega, \pm$ one scale division.
$\Delta R \%$ Dial: $\pm 5 \%$ range; accurate to $\pm 0.2 \%$ or, for small changes, to $\pm 0.1 \%$.
Test Voltage: Voltage accuracy is $\pm 3 \% \pm 0.5 \mathrm{~V}$.

Fixed Voltages**	10	20	50	100	200	500	1000	V
Minimum Unknown R	1	3	7	20	50	150	500	/
Minimum Test Voltage for 1%	Multiplier Setting				Max R_{x}		Volts	
Resolution:	$\begin{gathered} 100 \mathrm{G} \text { or less } \\ 100 \mathrm{GG} \\ 1 \mathrm{~T} \end{gathered}$				$\begin{aligned} & 10^{11} \\ & 10^{12} \\ & 10^{13} \end{aligned}$		$\begin{gathered} 10 \\ 100 \\ 200 \end{gathered}$	
for approx 1 -mm								
meter deflection								

*At high voltages; 1% accuracy is obtainable at 10 V up to 1011Ω; see above.
** Any voltage between 10 and 1000 V may be obtained using an external resistor.

Short-Circuit Current: <15 mA, 10-50 V; <10 mA, 100-1000 V.
Power Required: 105 to 125 or 210 to $250 \mathrm{~V}, 50$ to $400 \mathrm{~Hz}, 13 \mathrm{~W}$. Mounting: Flip-Tilt Case
Dimensions (width \times height \times depth): Portable model, $123 / 4 \times 121 / 2$ $\times 73 / 4$ in. ($325 \times 320 \times 200 \mathrm{~mm}$); rack model, $19 \times 121 / 4 \times 5 \mathrm{in}$. ($485 \times 315 \times 130 \mathrm{~mm}$).
Weight: Net, $19 \mathrm{lb}(9 \mathrm{~kg})$; shipping, $31 \mathrm{lb}(14.5 \mathrm{~kg})$.

Catalog Number	Description
$1644-9701$	1644-A Megohm Bridge
Portable Model	

U.S. Patent Numbers 0187,740 and 2,966,257.

SYMBOL INDICATES TERMINALS WHICH MAY HAVE A POTENTIAL OF 1000 VOLTS PRESENT.

\triangle
 WARNING

High voltage may be present at any of the red binding posts, depending on the switch settings. Lethal energy may be stored in a capacitance connected to the instrument ALWAYS SET THE FUNCTION SWITCH TO DISCHARGE BEFORE CONNECTING OR DISCONNECTING THE UNKNOWN COMPONENTS.

1.1 PURPOSE.

The Type 1644-A Megohm Bridge (Figure 1-1) measures resistance from 10^{3} to $10^{15} \mathrm{ohms}$. It is useful for measurements of resistors, of insulation resistance on components and machinery, for resistivity tests on samples of insulating material, and for leakage-resistance measurements on capacitors. The vernier ($\Delta \mathrm{R} \%$) dial permits accurate measurements of voltage and temperature coefficient of resistance. The voltage applied to the unknown may be set from 10 volts to 1000 volts.

1.2 CONTROLS AND INDICATORS.

Table 1-1 (on page 2) lists the controls and connectors on the panel and sides of the Type 1644-A Megohm Bridge.

1.3 SYMBOLS.

The following abbreviations are on the RESISTANCE MULTIPLIER dial of the Type 1644-A Megohm Bridge:

$$
\begin{aligned}
& 1 \mathrm{k} \Omega=10^{3} \Omega \\
& 1 \mathrm{M} \Omega=10^{6} \Omega=10^{3} \mathrm{k} \Omega \\
& 1 \mathrm{G} \Omega=10^{9} \Omega=10^{6} \mathrm{k} \Omega=10^{3} \mathrm{M} \Omega \\
& 1 \mathrm{~T} \Omega=10^{12} \Omega=10^{9} \mathrm{k} \Omega=10^{6} \mathrm{M} \Omega=10^{3} \mathrm{G} \Omega
\end{aligned}
$$

Fiqure 1. Type 1644 Megohm Bridge.

CONTROLS AND CONNECTORS			
Fig.Ref. No.			
	Name	Type	Function
1	Function	5-position rotary control	Turns instrument on, selects DISCHARGE, CHARGE-ZERO, or MEASURE function. (See paragraph 2.2.)
2	COARSE ZERO	Continous rotary control	For coarse zero adjustment of detector.
3	FINE ZERO	Continous rotary control	For sensitive zero adjustment of detector.
4	VOLTAGE ON UNKNOWN	8 -position rotary control	Selects magnitude of internal voltage applied to the unknown or connects an external voltage source. (See paragraph 2.2.)
5	RESISTANCE MULTIPLIER	10-position rotary control	Selects the measurement range.
6	R	Continous rotary control with dial	Balances bridge.
7	SENSITIVITY	Continous rotary control	Adjusts the sensitivity of the detector circuit. (See paragraph 2.4.)
8	$\Delta \mathrm{R} \%$	$\left\{\begin{array}{l} \text { Pushbutton switch } \\ \text { Continous rotary control } \\ \text { with dial } \end{array}\right.$	Inserts $\Delta \mathrm{R} \%$ adjustment in the measurement circuit. (See paragraph 2.4.) Balances bridge over $\pm 5 \%$ range. (See paragraphs 3.6, 3.7, and 3.8.)
9	- UNKNOWN +	Pair of insulated binding posts	For connection of component to be measured.
10	Ground	Uninsulated binding post	Ground connection to instrument chassis. (See paragraph 2.1.4.)
11	GUARD	Insulate 1 binding post	For connection to points to be guarded, such as shields of leads. (See paragraph 3.4.)
12	EXT GEN	Pair of insulated binding posts	For connection of an external voltage supply. (See paragraph 3.10.)
13	EXT ADJ	Pair of insulated binding posts	For connection of a resistor to adjust the voltage applied to the unknown to values between those supplied. (See paragraph 3.9.)

OPERATING PROCEDURE

2.1 INSTALLATION.

2.1.1 OPENING AND TILTING THE CABINET.

The directions for opening the Type 1644-A are given on the handle support of the instrument. Once open, the instrument can be tilted to any convenient angle, as shown in Figure 1-1. The angle should be chosen to give the most comfortable access to the knobs and the best view of the meter and dials.

The instrument may be locked fully open by the same slide pins that are used to lock the instrument closed. Thus, the instrument can be carried in the open position with the cover firmly in place.

The cover forms a convenient storage place for the instruction manual and for any test data that should be kept with the instrument.
2.1.3 POWER CONNECTION. Any changes to line voltage configuration must be performed by qualified personnel.

The 1644 is normally supplied connected for $105-$ to $125-\mathrm{V}, 50-$ to $400-\mathrm{Hz}$ line voltage. The instrument is connected for $210-$ to $250-\mathrm{V}, 50$ to 400 Hz line voltage, if specified when ordered. Two fuses are supplied with the instrument; one, F501, is a spare, two 3-A Slo-Blo fuses, Bussman MDL 0.2 A or equivalent, are supplied for the $105-125-\mathrm{V}$ connection. Two 0.1-A Slo-Blo fuses, Bussman MDL 0.1A or equivalent, are supplied when $210-250-\mathrm{V}$ is specified.

To change line voltage, refer to the note in Figure 5-7. The power transformer can be reconnected for each line voltage. If the line voltage connection is changed, make sure the proper fuse is fitted in the F502 holder. Also, the voltage legend plate on the cabinet should be changed to ensure that the instrument is not inadvertently connected to the wrong line voltage. On instruments changed to $210-250 \mathrm{~V}$, order a 210-250 V nameplate (P/N 5590-1665). For a change to 105-125 V, order nameplate $\mathrm{P} / \mathrm{N} 5590-1660$.

Check that the proper fuse is in holder F502 and connect the instrument, using the power cord provided.

2.1.4 GROUNDING THE INSTRUMENT.

To avoid electric shock the chassis must always be connected to ground. This is particularly important for very high resistance measurements where lack of a ground can cause difficulty. It is also advisable to ground the panels of nearby instruments to avoid electrostatic coupling to the detector.

2.1.5 CONNECTION OF GROUNDING LINK.

The grounding link, captive to the uninsulated (chassis) binding post, may be connected either to the GUARD terminal or to the - UNKNOWN terminal as shown in Figure 2-2. The ground-to-GUARD connection is preferable if the unknown is a small, separate component, or if it is mounted in an enclosure that should be guarded. (Refer to paragraph 3.4). However, if one terminal of the unknown must be grounded or is a large exposed surface, this terminal should be connected to the - UNKNOWN binding post and the grounding link connected between the - UNKNOWN post and the chassis ground post.

UNGROUNDED OPERATION
Figure 2-2. Grounding link connected to the GUARD terminal (top) and the - UNKNOWN ter-
minal (bottom).

GROUNDED OPERATION

2.2 BASIC MEASUREMENT PROCEDURE.

Many types of measurements under various conditions can be made with this instrument. The following is the basic measurement procedure. References are given to paragraphs that discuss each step more fully or consider alternate procedures or special measurements.

Abstract

WARNING This instrument provides a high test voltage. Particular care should be used in the measurement of capacitor leakage, because LETHAL ENERGY may be stored in the unknown capacitor. DO NOT TOUCH THE CAPACITOR TERMINALS WHILE THE "VOLTAGE APPLIED" LIGHT IS ON. ALWAYS SET THE FUNCTION SWTICH TO DISCHARGE BEFORE CONNECTING OR DISCONNECTING THE UNKNOWN COMPONENT.

Proceed as follows:

a. Turn the function switch from OFF to DISCHARGE. Allow a minute or two for warmup.
b. Select the desired test voltage with the VOLTAGE ON UNKNOWN switch. (Refer to paragraph 3.9 for external adjustment of the voltage supply and to paragraph 3.10 for use of an external supply.) The minimum resistance that can be measured at each test voltage is given in Table 2-1. Avoid changıng the test voltage when the function switch is in the MEASURE position as this will severely overload the detector amplifier which will then require several minutes to recover.
c. Connect the component to the UNKNOWN terminals. Note polarity. (For grounding-link connection, refer to paragraph 2.1.5; for remote measurements, refer to paragraph 3.5.)
d. Set the RESISTANCE MULTIPLIER switch to the desired range (if it is known).
e. Set the SENSITIVITY control fully clockwise for measurements either on the highest ranges or at low voltages. Set it halfway (arrow up) for other measurements. (Refer to paragraph 2.4.)
f. Set the function switch to CHARGE-ZERO and adjust the COARSE ZERO and then the FINE ZERO controls for a meter zero (null).

MINIMUM MEASUREMENT RANGES	
	2-1
$\frac{\text { Test Voltage }}{10 \mathrm{v}}$	$\frac{\text { Minimum } R}{}$
20 v	$1 \mathrm{k} \Omega$
50 v	$3 \mathrm{k} \Omega$
100 v	$7 \mathrm{k} \Omega$
200 v	$20 \mathrm{k} \Omega$
500 v	$50 \mathrm{k} \Omega$
1000 v	$150 \mathrm{k} \Omega$
	$500 \mathrm{k} \Omega$

g. Set the function switch to MEASURE and adjust the main R dial (and the RESISTANCE MULTIPLIER switch, if necessary) to give a null (meter zero). A deflection to the right indicates that the dial setting should be increased. For maximum accuracy on the highest ranges, rezero the meter (step f) when the RESISTANCE MULTIPLIER switch is reset.
h. The value of the unknown resistance is the dial reading at null indication multiplicd by the quantity indicated on the RESISTANCE MULTIPLIER dial. (For accuracy of measurement, refer to paragraph 2.3.)
i. Return the function switch to DISCHARGE and then remove the component measured.

2.3 ACCURACY.

The bridge accuracy is $\pm 1 \%$ between readings of 0.9 and 10 on the main R dial. Above a reading of 10 , the accuracy tolerance increases proportionally so that it is $\pm 2 \%$ at 20 and $\pm 10 \%$ at 100 . An indication of 1000 can be distinguished from 500 or ∞. There are three exceptions to this:
a. the three highest ranges will not necessarily be 1% accurate if they have not been recently calibrated or if the ambient temperature has changed appreciably (refer to paragraph 5.4.1);
b. reduced sensitivity reduces the accuracy on the two highest ranges if less than 100 volts is applied to the unknown;
c. on the $1-\mathrm{T} \Omega$ multiplier range, the accuracy is 2%.
For greatest accuracy, particularly at high resistance values, be sure that the component to be measured is not shunted by insulating materials with resistance low enough to introduce error. (See also paragraphs 3.11 and 3.12.)

2.4 SENSITIVITY.

The high sensitivity of the internal dc null detector (approximately 300μ volts/division near zero) permits accurate measurements with low applied voltages, for measurement on the high ranges, and for measurements of small differences with the $\Delta R \%$ dial. For other measurements less sensitivity keeps the pointer on scale over a greater adjustment range and does not show the amplifier drift and the discontinuous meter jumps due to finite resolution of the main R dial. Balances to a precision well beyond the bridge accuracy offer no advantage, and take more time.

For maximum sensitivity, the measurement should be made on the highest range possible. The expression for the bridge output voltage is:

$$
\mathrm{E}_{\mathrm{O}}=\frac{\mathrm{E}_{\mathrm{IN}}(\delta \%) \mathrm{M}}{(\text { Dial Reading })}
$$

where ε is the unbalance in percent M is unity except on the $100-\mathrm{G} \Omega$ and $1-\mathrm{T} \Omega$ ranges where it is 0.1 and 0.05 , respectively.
Thus, a low dial reading increases sensitivity. With careful zeroing, voltages as low as 50μ volts can be detected. Therefore, with 10 volts applied and a dial indication of 1 , resolution is 0.05% on all but the two highest ranges.

Note that the meter scale is nonlinear. This allows a wide dynamic range without adjustment of the SENSITIVITY control and still gives high sensitivity near null (zero). Full meter deflection is not possible when the SENSITIVITY control is fully counterclockwise. This low sensitivity is useful for limit measurements on the linear portion of the scale (refer to paragraph 3.13).

2.5 LINE-VOLTAGE REGULATION.

The accuracy of measurements accomplished with precision electronic test equipment operated from ac line sources can often be seriously degraded by fluctuations in primary input power. Line-voltage variations as much as $\pm 15 \%$ are commonly encountered, even in laboratory environments. Although most modern electronic instruments incorporate some degree of regulation, possible power-source problems should be considered for every instrumentation setup. The use of line-voltage regulators between power lines and the test equipment is recommended as the only sure way to rule out the effects on measurement data of low line voltage, transients, and other power phenomena.

SECTION 3

APPLICATIONS

3.1 RESISTOR MEASUREMENT.

The EIA standard test voltage for fixed composition resistors, film resistors, and wire-wound resistors is 100 volts for values above $100 \mathrm{k} \Omega, 10$ volts between $1 \mathrm{k} \Omega$ and $9.9 \mathrm{k} \Omega$, and 30 volts between $10 \mathrm{k} \Omega$ and $99 \mathrm{k} \Omega$. (To obtain a 30 -volt test voltage with the internal supply of the Type $1644-\mathrm{A}$, connect a $20-\mathrm{k} \Omega$ resistor between the EXTERNAL ADJ terminals and set the VOLTAGE ON UNKNOWN switch to 50, as described in paragraph 3.9.)

For many types of resistors, the value measured at some other voltage may be considerably different from that at the standard test voltage, due to a large voltage coefficient (refer to paragraph 3.7). In many cases, measurements at the voltage at which the resistor will be used are helpful.

Resistors as low as $1 \mathrm{k} \Omega$ may be measured easily to 1% on the Type 1644-A Megohm Bridge. More accurate substitution measurements are possible using the $\Delta \mathrm{R} \%$ dial if an external standard is available (refer to paragraph 3.6).

If the resistors to be measured are small, separate units, they should be measured ungrounded with the grounding link connected between the GUARD and ground terminals. Resistors may be measured rapidly in a production-line setup using the procedure described in paragraph 3.13.

3.2 INSULATION TESTING.

3.2.1 COMPONENT, MACHINERY, AND SWITCH-GEAR INSULATION.

Insulation testing on a wide variety of apparatus is possible with the Megohm Bridge, but different types of devices require different precautions. When one terminal is the case of the apparatus, or is a large, exposed surface, this terminal should be grounded, for both accuracy and safety, by connection to the - UNKNOWN terminal with the link connected between
this terminal and the chassis ground terminal (refer to paragraph 2.1.5). When the device to be measured includes polarized rectifiers or capacitors, the sign of the applied voltage must be correct. Note that the +UNKNOWN terminal may be grounded with an external lead if necessary (disconnect the link from both adjacent terminals), but errors may occur when this connection is used to measure resistances above approximately $100 \mathrm{M} \Omega$.

The connection of leads to large equipment also requires some care, and the problems of a large capacitive time constant and dielectric absorption may also be present (refer to paragraphs 3.3.3 and 3.2.3, respectively).

3.2.2 TEST SAMPLES.

This bridge is well suited for resistance measurements on samples of insulating material as described by ASTM Standard D257. This standard describes in detail the techniques of both surface- and volume-resistivity measurements. Diagrams of several electrode configurations, applicable formulas, and suggested precautions are given.

The most commonly used electrode arrangement for solid materials is that shown in Figure 3-1. This configuration may be used for either surfaceor volume-resistivity measurements, but for surface

Figure 3-1. Electrode arrangement for insulation testing of solid materials.
measurements the gap, g, should be approximately twice the sample thickness, t . The connection of the electrodes to the bridge depend on the quantity to be measured as shown in Table 3-1. The ASTM Standard also describes other sample holders for both liquid and solid materials.

Standard voltages for this test are 100, 250, 500, $1000,2500,5000,10,000$, and 15,000 volts, of which the most common are 100 and 500 volts. The Type 1644-A Megohm Bridge will supply 100, 500, and 1000 volts directly, and 250 volts when an external resistor is used (235 kilohms when the VOLTAGE ON UNKNOWN switch set to 500; refer to paragraph 3.9).

3.2.3 DIELECTRIC ABSORPTION.

The apparent resistance of an insulator is the ratio of voltage applied to the current flowing through it. Unfortunately, the current is time-dependent and the true insulation resistance is the limiting, steadystate value.

The time-dependent currents are the simple charging current that depends on the capacitance of the sample and on the resistance of the voltage source, and the current due to dielectric absorption. The simple charging current is negligible after the function switch has been in the CHARGE-ZERO position for a very short time (except when large capacitors are tested; refer to paragraph 3.3.2). However, the absorption current may be appreciable for minutes, hours, or in rare cases, even days. This dielectric absorption is the result of dipole and interfacial polarization and ion mobility and is particularly large for laminated materials.

A measure of the dielectric absorption is the polarization index, which is defined as the ratio of the resistance measured after 10 minutes to that measured after one minute of electrification. Often, a single measurement after one minute is called the insulation resistance. Although this value may be far from the true resistance for some insulators, it is useful for comparison of measurements on materials with relatively low absorption.

3.2.4 MEASUREMENT PROCEDURE.

The procedure for measurement of insulation resistance is the same as the basic measurement procedure described in paragraph 2.2 except for charging and dielectric-absorption considerations.

The function switch should be left in the CHARGE position long enough to charge the sample. The time required for simple charging is usually well under one second except for capacitors or extremely large samples (refer to paragraph 3.3.2).

When dielectric absorption is present, the main R dial must be continually adjusted to maintain a balance. To measure resistance at any given moment, simply stop adjusting the dial at the desired time. Thus, it is not necessary to make a reading on a moving dial (see paragraph 3.3.4).

3.3 LEAKAGE RESISTANCE OF CAPACITORS.

3.3.1 GENERAL.

The energy stored in a capacitor may be LETHAL. The function switch should be set to discharge before you connect or disconnect the capacitor to be measured. DO NOT TOUCH THE CAPACITOR TERMINALS WHILE THE "VOLTAGE APPLIED" LIGHT IS ON.

The procedure for measurements of the leakage resistance on capacitors is basically the same as that for resistors except that the several effects described in the following paragraphs become more important as the capacitance and leakage resistance become greater.

3.3.2 CHARGING TIME.

The function switch should be left in the CHARGE position long enough to ensure that the capacitor is completely charged. If it is not fully charged, the charging current will reduce the measured value of leakage resistance, and the charging time constant in the MEASURE position can become quite large (refer to paragraph 3.3.3).

The charging time is limited mainly by the maximum current of about 8 ma that can be drawn from the power supply. Charging time is, therefore:

$$
\begin{aligned}
& t=\frac{C V}{I}=\frac{C V}{8 \mathrm{ma}} \\
& \mathrm{t}=\frac{(\mathrm{C} \text { in } \mu \mathrm{f})(\mathrm{V} \text { in volts })}{8} \times 10^{-3} \mathrm{sec}
\end{aligned}
$$

This time is usually less than 1 second except for large electrolytic capacitance units. The current is somewhat greater than 8 ma at 50 volts or less.

ELECTRODE CONNECTIONS FOR INSULATION TESTING				
Electrode	Function	Connect to	Function	onnect to
\#1	Guarded Electrode	+ UNKNOWN	Guarded Electrode	+ UNKNOWN
\#2	Guard Electrode	GUARD	Unguarded Electrode	- UnKNOWN
\#3	Unguarded Electrode	- UNKNOWN	Guard Electrode	GUARD

3.3.3 TIME-CONSTANT EFFECTS.

The time constant of the bridge-capacitor system for the MEASURE function is the product of the capacitance measured and the effective bridge output resistance, R_{O}, given in Table 3-2. If this product is greater than about 0.1 second, the bridge will appear to be sluggish and the user may adjust the bridge beyond balance before the null-detector deflection reverses sign. Adjustment will be easier, although the total balance time will not be less, if you wait for a period of several time constants between balances.

When the function switch is set to CHARGE, the capacitor being tested is charged to a voltage that is dependent upon the position of the R dial. This voltage may differ from the final capacitor voltage by as much as 1% of the applied voltage. The final charging or discharging must be done with the function switch set to MEASURE so the time required is independent of further adjustment of the R dial.

In extreme cases, this time constant may be so long that it is impractical to wait. An alternate procedure described below makes use of the fact that the bridge is initially at balance when the function switch is rotated from CHARGE-ZERO to MEASURE, and then drifts slowly off null. The direction of the nulldetector drift indicates the direction that the main R dial should be rotated to obtain the final balance.

The alternate balance procedure for measurement of capacitors with long time constants is given below:
a. Set the function switch to CHARGE and allow time for full charging (refer to paragraph 3.3.2).
b. Rotate the function switch to MEASURE and note the direction of the drift from zero (discount the small, fast deflection caused switching phenomena).
c. Make a large adjustment in the main R dial in the direction indicated by the null detector (i.e., a right-hand meter deflection indicates that the dial reading should be increased).
d. Return the function switch to CHARGE and repeat the above steps until a balance is reached.

Note that the time constant is reduced if the measurement is made on a lower range (i.e. with a dial reading above 10) so that a lower-valued standard is used. This, of course, gives reduced accuracy, but high accuracy is rarely required for this type of measurement. Also, use reduced detector sensitivity, at least to get a rough balance.

3.3.4 DIELECTRIC ABSORPTION.

Dielectric absorption is present to some degree in all capacitors, but is particularly pronounced in some impregnated paper types and is lowest in unimpregnated polystyrene, polyethylene, and Teflon ${ }^{\left({ }^{2}\right.}$ units. The effect of dielectric absorption is discussed in paragraph 3.2.3. For measurements on most types of capacitors, electrification for two minutes is common practice.

TABLE 3 -2 BRIDGE OUTPUT RESISTANCE

R_{S}			
Range	Value	Type	R_{O}
$1 \mathrm{k} \Omega$.	10Ω	Wire-wound	$5 \mathrm{k} \Omega \dagger$
$10 \mathrm{k} \Omega$	100Ω	Wire-wound	$5 \mathrm{k} \Omega \dagger$
$100 \mathrm{k} \Omega$	$1 \mathrm{k} \Omega$	Wire-wound	$5 \mathrm{k} \Omega \dagger$
$1 \mathrm{M} \Omega$	$10 \mathrm{k} \Omega$	Wire-wound	$15 \mathrm{k} \Omega \dagger$
$10 \mathrm{M} \Omega$	$100 \mathrm{k} \Omega$	Wire-wound	$100 \mathrm{k} \Omega$
$100 \mathrm{M} \Omega$	$1 \mathrm{M} \Omega$	Metal-film	$1 \mathrm{M} \Omega$
$1 \mathrm{G} \Omega$	$10 \mathrm{M} \Omega$	Metal-film	$10 \mathrm{M} \Omega$
$10 \mathrm{G} \Omega$	$100 \mathrm{M} \Omega$	Carbon-film**	$100 \mathrm{M} \Omega$
$100 \mathrm{G} \Omega$	$1000 \mathrm{M} \Omega^{*}$	Carbon-film**	$100 \mathrm{M} \Omega$
$1 \mathrm{~T} \Omega$	$10,000 \mathrm{M} \Omega^{*}$	Carbon-film**	$500 \mathrm{M} \Omega$

* T network, effective value given, refer to paragraph 3.6.3.
** Adjustable, refer to paragraph 5.4.1.
\dagger Depends on setting of R dial.

When both appreciable dielectric absorption and a long time constant are present, measurements become quite difficult because it is hard to tell which effect causes the meter drift. In such cases, it is often useful to make limit measurements. Set the main R dial and the RESISTANCE MULTIPLIER switch to the acceptance limit and wait to see if the meter deflects to the left, which indicates that the resistance is below the limit. A time limit should be included in the specifications for such a limit measurement.

3.3.5 ERRATIC DEFLECTIONS CAUSED BY LINE TRANSIENTS.

When leakage resistance of capacitorsis measured on the higher resistance ranges, the test-voltage supply must be extremely well regulated to avoid erratic meter deflections due to power-line transients. The capacitor being measured couples the high voltage supply to the detector so that rapid variations of less than 1 millivolt on the high voltage supply are easily seen. The regulation of the internal supply of the Type $1644-$ A is very good, but in extreme cases, when the power-line voltage is very noisy, an external battery should be used as the test-voltage supply (refer to paragraph 3.10).

3.3.6 SMALL VOLTAGE CHANGES DURING CAPACITANCE MEASUREMENTS.

In the measurement of high-capacitance, very-low-leakage capacitors (particularly polystyrene units), a small drift in the bridge voltage supply will cause an error in leakage measurements. This is particularly noticeable when the bridge indication is greater than infinity. This condition occurs when the voltage rate-of-change multiplied by the time constant ($\mathrm{C}_{\text {unknown }} \times \mathrm{R}_{\mathrm{O}}$; see Table 3-2 for values of R_{O}) is in the order of a few millivolts. It is, therefore, most noticeable for measurements at high voltage and on the high RESISTANCE MULTIPLIER ranges.

Figure 3-2. Three-terminal resistance measurement.

One source of this difficulty is the drift in the internal supply during warm-up. A warm-up period of one hour is recommended. In extreme cases, an external supply of high stability must be used (refer to paragraph 3.10). Another cause of this difficulty is ambient temperature change which changes both the internal supply voltage and the temperature of the capacitor being measured. If the capacitor has an appreciable temperature coefficient, a capacitor voltage change will result.

3.4 GUARDED (DIRECT) THREE-TERMINAL MEASUREMENTS.

In many cases it is necessary to measure the resistance between two points in the presence of resistance from one or both of these points to a third point (usually ground). This third point can often be guarded to avoid error due to shunting the unknown with the extraneous resistances.

This is shown diagrammatically as a threeterminal resistor in Figure 3-2. Here, R_{X} is the quantity to be measured (the direct resistance) despite the presence of R_{A} and R_{B}. If the junction of R_{A} and R_{B} is tied to guard, R_{A} is across the detector and causes no error, but reduces the sensitivity by the factor $\frac{R_{A}}{R_{O}+R_{A}}$ (see Table 3-2 for values of R_{O}). The other extraneous resistance, R_{B}, is across the $500-k \Omega$ resistor, R_{P}, where it causes an error of more than 1% if R_{B} is below $50 \mathrm{M} \Omega$. The error due to R_{B} is approximately $-\frac{R_{P}}{R_{B}} \times 100 \%$.

The guard may be used whether the GUARD or the - UNKNOWN terminal is grounded. Note however, that if the - UNKNOWN terminal is grounded, the GUARD terminal will be at high potential. Often the terminal to be guarded is a large chassis or case and it is safer to ground the GUARD terminal.

3.5 REMOTE MEASUREMENTS.

Measurements can be made on components that are some distance from the instrument if care is used to prevent leakage between the connecting leads and to avoid shock. A convenient way to do this is to use a shielded cable as shown in Figure 3-3.

The + UNKNOWN terminal should be connected to the center conductor and the shield tied to the GUARD terminal. The lead to the - UNKNOWN terminal need not be shielded, but if it is, its shield should also be tied to GUARD.

The - UNKNOWN lead should be insulated unless this termınal is grounded. All shields tied to GUARD should be insulated if the GUARD terminal is not grounded.

3.6 SUBSTITUTION MEASUREMENTS.

3.6.1 GENERAL.

Substitution (or comparison) measurements can be made with accuracy up to 0.1% by means of the $\Delta R \%$ dial. Substitution measurements require an external standard that is known to an accuracy substantially better than the desired measurement accuracy. Resistors of high accuracy are not available in the high megohm range but the three-terminal standard described below can be used. If only the differences between resistors are to be determined, and not absolute values, the value of the standard need not be accurately known.

3.6.2 PROCEDURE.

The procedure for a substitution measurement is simply to measure the unknown and then the standard and determine the difference between them. The value for R_{x} is then:

$$
R_{x}=R_{s}+R_{x m}-R_{s m}
$$

where R_{x} and R_{s} are the true values of the unknown and the standard

$$
\mathrm{R}_{\mathrm{xm}} \text { and } \mathrm{R}_{\mathrm{sm}} \text { are the measured values }
$$ of the unknown and the standard.

The difference between $R_{x m}$ and $R_{s m}$ can be most accurately determined if this difference is small enough to be within the range of the $\Delta \mathrm{R} \%$ dial. The first balance should be made with the main R dial and then the $\Delta \mathrm{R} \%$ dial. The second balance should be made using only the $\Delta R \%$ dial (leave the R dial as set). The value of the unknown is then:

$$
R_{x}=R_{S}\left(1+\frac{\Delta R \%}{100}\right)
$$

Here, $\Delta \mathrm{R} \%$ is the $\Delta \mathrm{R} \%$ dial reading for the unknown minus that for the standard.

Figure 3-3. Connection for remote measurements.

An alternate scheme may be used if a T network with an adjustable resistor (refer to paragraph 3.6.3) is used as a standard. In this case, the T is used to make the second balance and is adjusted for a null without moving either dial of the bridge. The value of the unknown is calculated from:

$$
\mathrm{R}_{\mathrm{x}}=\mathrm{R} 1+\mathrm{R} 3+\frac{(\mathrm{R} 1)(\mathrm{R} 3)}{\mathrm{R} 2}+(0.5 \mathrm{M} \Omega) \frac{\mathrm{R} 3}{\mathrm{R} 2}
$$

3.6.3 THREE-TERMINAL RESISTANCE STANDARDS.

The T or Y connection of resistors shown in Figure $3-4 \mathrm{a}$ is electrically identical to the Δ configuration of Figure 3-4b. This is the familiar Y- Δ transformation. If R2 is small and R1 and R3 are large, the resistance R_{Y} can be very large. R_{Y} can be used as a standard and will be very stable and accurate if. wire-wound resistors are used for the resistors of the T .

Such a T network should be connected to the bridge as shown in Figure 3-2. Unfortunately, the resistances R_{A} and R_{B} shunt the bridge resistor R_{P}, which causes an error (refer to paragraph 3.4), and shunt the detector, which decreases sensitivity. The ioss of sensitivity limits the attainable accuracy at low test voltages (refer to paragraph 3.6.4).

The error caused by the shunt on R_{p} can be compensated for in the calculation of the resistors of the T. For any desired value of R_{Y}, the value of $R 2$ should be:

$$
\mathrm{R} 2=\left(\frac{500 \mathrm{k} \Omega+\mathrm{R} 1}{\mathrm{R}_{\mathrm{Y}}-\mathrm{R} 1-\mathrm{R} 3}\right) \mathrm{R} 3
$$

The lowest value R_{Y} can have is $\mathrm{Rl}+\mathrm{R} 3$.
For the most precise measurements, R1 and R3 should be the largest wire-wound units available, and R2 should be a multi-dial decade box. If R1 and R3 are $1-\mathrm{M} \Omega$ units, then the equation for R 2 becomes:

$$
\mathrm{R} 2=\frac{1.5}{\mathrm{R}_{\mathrm{Y}}-2} \mathrm{M} \Omega
$$

where R_{Y} is in megohms.
If $\mathrm{R} 1=\mathrm{R} 3=10 \mathrm{M} \Omega$, then:

$$
\mathrm{R} 2=\frac{105}{\mathrm{R}_{\mathrm{Y}}{ }^{-20}} \mathrm{M} \Omega
$$

Table 3-3 lists the values of R2 for decade values of R 1 and R3 from $10 \mathrm{M} \Omega$ to $1 \mathrm{~T} \Omega$.

Figure 3-4a. Y configuration of a three-terminal standard.

Figure 3-4b. Delta configuration of a three-terminal standard.

3.6.4 ACCURACY AND SENSITIVITY.

The bridge accuracy for substitution measurements using the $\Delta \mathrm{R} \%$ dial is $\pm 0.1 \%$ as long as the sensitivity is adequate (refer to paragraph 2.4). However, if the two balances are well within 1 percent of each other, the bridge accuracy can be as good as $\pm 0.02 \%$. Measurements on the main R dial can be made to $\pm 1 / 4 \%$ if the difference is small and the scale is carefully interpolated.

The accuracy of the standard must also be considered in the over-all accuracy determination. To determine the accuracy for the worst case, the tolerance of the standard must be added to the bridge tolerance. When a T network is used, the worst possible tolerance of the T is the sum of the tolerances of the separate resistors if

$$
\frac{(\mathrm{R} 1)(\mathrm{R} 3)}{\mathrm{R} 2} \gg \mathrm{R} 1+\mathrm{R} 3
$$

When a T standard is used to measure very high values, the sensitivity is generally the limiting factor. The approximate output voltage is:

$$
\mathrm{E}_{\mathrm{O}}=\frac{\left(\mathrm{E}_{\mathrm{IN}}\right)(\delta \%)(\mathrm{M})}{(\text { Dial Reading })\left(10^{4}\right)} \times \frac{\mathrm{R} 1}{\mathrm{R}_{\mathrm{O}}+\mathrm{Rl}}
$$

where $\varepsilon \%$ is the unbalance in percent
M is unity except on the $100-\mathrm{G} \Omega$ and $1-\mathrm{T} \Omega$ ranges where it is 0.1 and 0.05 , respectively R_{O} is given in Table 3-2.
Example:
A $10-\mathrm{G} \Omega$ component is measured on the $10-\mathrm{G} \Omega$

> range.

A T network with l-M Ω resistors is used.
$\mathrm{E}_{\mathbb{N}}=1000$ volts.
$\delta \%=0.1 \%$.

TABLE 3-3

RESISTANCE VALUES FOR T NETWORKS

R_{Y}, Equivalent Resistance	$10 \mathrm{M} \Omega$	$100 \mathrm{M} \Omega$	$1 \mathrm{G} \Omega$	$10 \mathrm{G} \Omega$	$100 \mathrm{G} \Omega$	$1 \mathrm{~T} \Omega$	
$R 2$, when $R 1=R 3=1 \mathrm{M} \Omega$	$187.5 \mathrm{k} \Omega$	$15.306 \mathrm{k} \Omega$	$1.5022 \mathrm{k} \Omega$	150.02Ω	$15.000 \Omega *$	$1.5000 \Omega^{*}$	
$R 2$, when $R 1=R 3=10 \mathrm{M} \Omega$		$1.3125 \mathrm{M} \Omega$	$107.14 \mathrm{k} \Omega$	$10.521 \mathrm{k} \Omega$	$1.0502 \mathrm{k} \Omega$	$105.0 \Omega^{*}$	

$\mathrm{R}_{\mathrm{O}}=100 \mathrm{M} \Omega$ (see Table 3-2).
$\mathrm{E}_{\mathrm{O}}=\frac{(1000)(0.1)}{(1)(104)} \times \frac{1 \mathrm{M} \Omega}{101 \mathrm{M} \Omega}=100 \mu$ volts.
This would give meter deflections of about 1 mm .
If the arms of the T network were increased to $10 \mathrm{M} \Omega$, the sensitivity would be increased by a factor of 10 .

3.7 MEASUREMENT OF VOLTAGE COEFFICIENT.

3.7.1 GENERAL.

The Type 1644-A Megohm Bridge is well suited for the measurement of voltage coefficient because of the high resolution of its $\Delta \mathrm{R} \%$ dial and the wide range of applied voltage.

The voltage coefficient of a resistor is generally defined as:

$$
V C=\frac{R 1-R 2}{R 2(V 1-V 2)} \times 100 \%
$$

where V1 > V2
R1 is the resistance at V1
R 2 is the resistance at V2
VC is in \% per volt.
Any two voltages may be used, but, because the voltage coefficient is not necessarily a constant (i.e., the resistance is not always a linear function of voltage), the voltages used should be specified.

A common practice is to use two voltages differing by a factor of ten to one, in which case the formula reduces to:

$$
\mathrm{VC}=\frac{\Delta \mathrm{R}}{\mathrm{R}} \times \frac{1}{0.9} \mathrm{~V} \times 100 \%
$$

where ΔR is the resistance difference R is the resistance at the lower voltage V is the higher voltage.
The EIA Standard RS172 (Fixed Composition Resistors) specifies the use of the rated voltage for V in the above formula.

If the applied voltage is high enough to cause appreciable power dissipation, the measurement should be made quickly to determine the true voltage coefficient and to avoid temperature effects. The EIA specification suggests that the time for measurement (at the higher voltage) be less than 5 seconds.

Most resistors have a negative voltage coefficient (a lower resistance value at higher voltage), except for semiconductor back resistance which has a positive voltage coefficient as long as the voltage is well below the break-down value.

3.7.2 PROCEDURE.

The procedure for voltage-coefficient measurement is as follows:
a. Measure the resistance of the unknown at the lower voltage. For best accuracy use the $\Delta R \%$ dial as the final balance adjustment, and note the $\Delta \mathrm{R} \%$ dial indication.
b. Change the position of the VOLTAGE ONUNKNOWN switch to the higher voltage and rezero the bridge with the function switch set to CHARGE-ZERO, if necessary.
c. Balance the bridge with the $\Delta \mathrm{R} \%$ dial only (do not change the setting of the main R dial).
d. The voltage coefficient is:

1) Initial balance made only with R dial:

$$
\mathrm{VC}=\frac{\Delta \mathrm{R} \% \text { Dial Reading }}{\text { Voltage Change }}
$$

2) Initial balance made using $\Delta R \%$ dial:

$$
\mathrm{VC}=\frac{\text { Change in } \Delta \mathrm{R} \% \text { Dial Reading }}{\text { Voltage Change }}
$$

3.8 MEASUREMENT OF TEMPERATURE COEFFICIENT.

3.8.1 GENERAL.

The $\Delta \mathrm{R} \%$ dial allows the precise measurement of temperature coefficient, which is defined as:

$$
\mathrm{TC} \% /{ }^{\circ} \mathrm{C}=\frac{\Delta \mathrm{R}}{\mathrm{R}} \times \frac{100 \%}{\Delta \mathrm{t}}
$$

where ΔR is the resistance change between the test temperature and the reference temperature
R is the resistance at the reference temperature
Δt is the temperature change in ${ }^{\circ} \mathrm{C}$ from the reference temperature.

The EIA Standards RS196 (Fixed Film Resistors) and RSI72 (Fixed Compensation Resistors) specify that measurements be made at $-15^{\circ} \mathrm{C}$. The EIA Standard RS229 (Wire-Wound Resistors) specifies measurements at $-55^{\circ} \mathrm{C},+105^{\circ} \mathrm{C}$, and $+145^{\circ} \mathrm{C}$, and a reference temperature of $+25^{\circ} \mathrm{C}$.

Shielded leads should be used to connect the sample in the temperature chamber to the bridge to avoid pickup and leakage (refer to paragraph 3.5).

3.8.2 PROCEDURE.

The procedure for the measurement of temperature coefficient is as follows:
a. With the resistor in an environment held at $25^{\circ} \mathrm{C}$, measure the resistance. For best accuracy use the $\Delta \mathrm{R} \%$ dial as a final balance adjustment. (Standard voltages should be used, refer to paragraph 3.1.) Note the $\Delta R \%$ dial reading.
b. Change the temperature of the resistor environment to the test temperature and, after stabilization, measure the resistance again, using only the $\Delta \mathrm{R} \%$ dial. (Leave the main R dial set as is.)
c. The temperature coefficient is:

$$
\mathrm{TC}=\frac{\text { Change in } \Delta \mathrm{R} \% \text { Dial Reading }}{\text { Temperature Difference in }{ }^{\circ} \mathrm{C}}
$$

3.9 EXTERNAL ADJUSTMENT OF THE INTERNAL TEST VOLTAGE.

Any test voltage between 10 volts and 1000 volts may be obtained by connection of the proper resistor between the EXTERNAL ADJ terminals.

WARNING

Voltage is present on the EXTERNAL ADJ terminals unless the VOLTAGE ON UNKNOWN switch is set to EXT or the instrument is turned off.
To adjust the internal test voltage proceed as follows:
a. Set the VOLTAGE ON UNKNOWN switch to EXT and connect a resistor of value R between the EXTERNAL ADJ terminals:

$$
\mathrm{R}=\frac{500\left(\mathrm{~V}_{\mathrm{S}}-10\right)\left(\mathrm{V}_{\mathrm{D}}-10\right)}{\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{D}}} \text { ohms }
$$

. where V_{S} is the VOLTAGE ON UNKNOWN switch setting
V_{D} is the desired voltage.
It is generally preferable to set V_{S} to the closest value above the desired voltage, V_{D}. Table 3-4 gives the values of resistance to obtain many common voltages. The external resistor should be rated for $\left(V_{D}-10\right)$ volts.
b. Set the VOLTAGE ON UNKNOWN switch to V_{S} and proceed with the measurement.

If a resistor of the required value is not available, a rheostat larger than this value may be used. With the VOLTAGE ON UNKNOWN switch set to EXT, attach the rheostat between the EXTERNAL ADJ terminals, then set the VOLTAGE ON UNKNOWN switch to V_{S}. Set the function switch to CHARGE-ZERO and adjust to the desired voltage using a voltmeter connected between the UNKNOWN terminals. Note that the - UNKNOWN terminal will be negative by an amount equal to V_{D} if the GUARD terminal is grounded, or the + UNKNOWN terminal will be positive by an amount equal to V_{D} if the - UNKNOWN terminal is grounded.

3.10 EXTERNAL TEST-VOLTAGE SUPPLY.

An external supply for the test voltage is useful for voltages below 10 volts, for continuous voltage adjustment, or for extreme stability for measurements on capacitors (refer to paragraph 3.3.5). For best stability, a battery is recommended. The maximum voltage that may be applied to the bridge is 1000 volts.

TABLE 3-4

RESISTANCE VALUES FOR EXTERNAL VOLTAGE ADJUSTMENT			
V_{D}	${ }^{v_{S}}$	R	
12 v	20 v	1.25	k Ω
15 v	20 v	5	k Ω
25 v	50 v	12	k Ω
30 v	50 v	20	$\mathrm{k} \Omega$
40 v	50 v	60	k Ω
60 v	100 v	56.25	$\mathrm{k} \Omega$
70 v	100 v	90	$\mathrm{k} \Omega$
80 v	100 v	157.5	$\mathrm{k} \Omega$
90 v	100 v	360	$\mathrm{k} \Omega$
125 v	200 v	145.7	$\mathrm{k} \Omega$
150 v	200 v	266	$\mathrm{k} \Omega$
175 v	200 v	627	$\mathrm{k} \Omega$
250 v	500 v	235.2	$\mathrm{k} \Omega$
300 v	500 v	355.3	$\mathrm{k} \Omega$
350 v	500 v	555.3	$\mathrm{k} \Omega$
400 v	500 v	955.5	
475 v	500 v	4.557	$\mathrm{M} \Omega$
600 v	1000 v	730.1	
700 v	1000 v	1.139	$\mathrm{M} \Omega$
750 v	1000 v	1.465	$\mathrm{M} \Omega$
800 v	1000 v	1.955	$\mathrm{M} \Omega$
900 v	1000 v	4.406	$\mathrm{M} \Omega$

Set the VOLTAGE ON UNKNOWN switch to EXT, and connect the external supply to the EXTERNAL GEN terminals. To keep the same polarity as the internal supply, the negative terminal should be connected to the right-hand GEN terminal (that is, the middle of the three EXTERNAL terminals). The external supply should be current-limited to protect it from short circuits. It is also advisable to limit the current to a safe value to avoid shock.

With the external supply connected as described above and the GUARD terminal of the bridge grounded, the negative side of this supply is at a negative potential when the function switch is set to CHARGE-ZERO or MEASURE, and the positive terminal is at high potential when the function switch is set to discharge. With the - UNKNOWN terminal grounded, the negative supply of the external supply is also grounded, and the positive side will be at o positive voltage for all positions of the function switch.

With the external generator connected as described above, the function switch will perform its operations. Note that the external supply is disconnected but not shorted in the DISCHARGE position. The circuit diagram for each position of the function switch is shown in Figure 3-5.

3.11 MEASUREMENTS ON VERY HIGH-VALUED RESISTORS.

3.11.1 GENERAL.

Extra precautions and careful technique are required for precise measurements on very high-valued resistors for several reasons.

The ratio-arm resistors used for the three highest ranges are carbon-film types and are not as stable as those used on the lower ranges. For accurate measurements on the highest ranges, the ratio arms may be adjusted by the procedure given in paragraph 5.4.1.

On the two highest ranges the sensitivity is reduced by a factor of $1 / 10$ and $1 / 20$, respectively, because T networks are used as standards (refer to paragraph 4.1). Measurements made at test voltages below 100 volts are difficult.

Other difficulties in measuring high valued resistors are discussed in the following paragraphs.

3.11.2 ELECTROSTATIC COUPLING.

On the three highest ranges the + UNKNOWN terminal is at a very high impedance and, as a result, a very small capacitive coupling to this terminal can cause a large voltage on the detector input. Two separate phenomena are present:
a. Variable capacitance to a point at a fixed voltage will induce a transient voltage on the detector. To observe this, set the main R dial to ∞, the function switch to MEASURE, and move your hands above the +UNKNOWN terminal.
b. Fixed capacitance to a variable voltage will also induce a voltage on the + UNKNOWN terminal, but it should have no dc component and will not cause a detector deflection unless it overdrives the detector, or is low enough in frequency (refer to paragraph 3.12.4).

3.11.3 SWITCH TRANSIENTS.

The movement of the function switch and the RESISTANCE MULTIPLIER switch will also cause transient detector voltages because of the changing capacitance of these switches (refer to paragraph 3.11 .2) and more subtle contact phenomena. These fluctuations should be ignored.

3.11.4 SHUNT LEAKAGE BETWEEN LEADS.

At high resistance levels one must be sure that the component being measured forms the only path between the + UNKNOWN and - UNKNOWN terminals. Leads should not touch each other, even if they are insulated with high-quality material. Shielding is the best way to avoid leakage between leads (refer to paragraph 3.5). If the - UNKNOWN terminal is grounded, leakage between the + UNKNOWN terminal and ground shunts the unknown. Therefore, ungrounded measurements should be used wherever possible.

3.11.5 MOISTURE ON THE UNKNOWN.

The device measured should be clean and dry. High-valued resistors should be handled only by their leads to avoid surface dirt. Surface moisture will reduce the resistance value considerably. For example, breathing on a glass-enclosed resistor of only 1 $G \Omega$ will cause a momentary change of several percent.

3.12 MEASUREMENTS UNDER ADVERSE CONDITIONS.

3.12.1 HIGH HUMIDITY.

The Type 1644-A Megohm Bridge has been designed to operate under conditions of rather high humidity but, nevertheless, errors will occur on the highest ranges when the relative humidity is over approximately 90%. However, the most serious errors generally result from the effects of humidity in the external unknown connections. A few simple precautions should be taken:
a. Clean the binding posts with a dry, clean cloth. Make sure that there is no dust or moisture between the UNKNOWN binding posts or between them and the panel.
b. Use ungrounded measurements if possible. That is, connect the GUARD terminal to the adjacent chassis ground terminal with the connecting link.
c. Be particularly careful to keep the leads that connect the bridge to the unknown separate from each other.

To determine possible errors due to humidity, balance the bridge with no connections to the UNKNOWN terminals; it should balance at ∞.

The most important precaution necessary under humid conditions is to avoid leakage on the surface of

Figure 3-5. Circuit diagrams for the Type 1644-A Megohm Bridge for each position of function switch.
the component being measured. In almost all cases, the error due to this leakage will be many times larger than errors due to improper operation of the bridge itself. Many high resistances simply cannot be meassured in a humid environment. Often, a simple solution is to place the component in a box with a light bulb or other source of heat. Shielded leads should be used to connect to the bridge (refer to paragraph 3.5).

3.12.2 TEMPERATURE EXTREMES.

The Type 1644-A Megohm Bridge should operate satisfactorily over a range from -30 to $+50^{\circ} \mathrm{C}$. The instrument may be exposed to temperatures from - 40 to $+85^{\circ} \mathrm{C}$ without damage.

For accurate measurements on the three highest resistance ranges, the ratio arms used should be adjusted at the temperature of use to take into account their temperature coefficients (refer to paragraph 5.4.1).

The temperature coefficient of the component being measured is often high enough so that it cannot be neglected and the bridge should not be expected to give the room-temperature value of the unknown when the component is not at room temperature.

3.12.3 VIBRATION AND SHOCK.

The vacuum-tube electrometer used in the detector is somewhat subject to mechanical shock and will give a transient deflection under these conditions. The detector mounting reduces this effect. However, if the bridge is set on a vibrating platform it should be mechanically isolated from the platform by a thick layer of some spongy material, such as foam rubber.

Vibration or other movement of the leads connecting the unknown can also cause transient detector deflection (refer to paragraph 3.11.2).

3.12.4 HIGH AC FIELDS.

Unshielded components and any unshielded leads that connect the component to the + UNKNOWN terminal may have a voltage induced on them because of capacitance coupling to objects which carry an ac voltage. The bridge is more sensitive to this capacitance pickup on the higher resistance ranges. The detector input circuit contains a low-pass filter that gives $50-$ db rejection at 60 cps , but large pickup can cause enough signal to overdrive the amplifier, shift its effective dc voltage, and yield an erroneous indication.

Such pickup can be easily detected by a change in meter deflection when the function switch is rotated counterclockwise from DISCHARGE to the adjacent, detented, unlabeled position. In this switch position, the bridge is connected just as in the MEASURE position except that the test voltage is not applied. (When the switch is in the DISCHARGE and CHARGE-ZERO positions, the + UNKNOWN terminal is not connected to the detector, see Figure 3-5.)

If ac pickup is a problem, the best solution is to shield the + UNKNOWN connecting lead and corresponding terminal of the unknown component, to ground the bridge and all nearby equipment, and to keep power cables as far from the bridge, the component measured, and the leads, as possible. If the effect of pickup cannot be completely removed, improved accuracy will result if this unlabeled switch position is used when the meter is zeroed.

3.12.5 SAMPLES WITH SOURCES OF EMF.

Some samples may contain either known or unsuspected sources of voltage due to chemical action, thermal emf, contact potential, or the presence of electrets. If such voltages are additive to the applied voltage, they will cause a bridge error.

If these voltages appear between the +UNKNOWN terminal and the GUARDterminal in a guarded system, they are particularly troublesome because they are applied directly across the detector. If the polarity is the same, this may result in a balance beyond ∞. Such a difficulty is apt to occur during guarded measurements on heterogeneous mechanical assemblies under high humidity.

3.13 PRODUCTION LIMIT TESTING.

Resistors, or the leakage resistance of all types of components, can be rapidly checked without repeated adjustment of the main R dial by using the meter as a limit indicator. Two types of operation are possible:
a. Simple, single-limit testing. To check rapidly that components are above or below some resistance level, set the RESISTANCE MULTIPLIER switch and the main R dial to the limit value, and connect the components to be measured, one at a time, to the UNKNOWN terminals. A deflection to the right indicates the resistance is higher than the limit and a deflection to the left indicates that it is lower. The function switch should be set to DISCHARGE between measurements to avoid shock, to avoid repeated meter banging, to check the zero between measurements, and to start each measurement at zero.
b. Lo-go-hi measurements. The meter deflection may be used to separate the components tested into three groups: those below the tolerance range, those in the tolerance range, and those above the tolerance range. The main R dial and the SENSITIVITY control (or VOLTAGE ON UNKNOWN switch) can be adjusted so that a meter deflection to the left of a certain value represents the lower limit, and a meter deflection to the right of a certain value represents the upper limit. A deflection of 5 divisions is recommended, since beyond that the meter is quite nonlinear. Once the controls are set, the components may be tested without adjustment of the dials. It is, however, preferable to zero the bridge between measurements.

3.15 BATTERY OPERATION.

The bridge may be battery-operated if a power line is not available. Two batteries are required: one battery to supply the test voltage should be connected to the EXTERNAL GEN terminals and may supply any voltage up to 1000 volts (refer to paragraph 3.10). The second battery to power the detector should supply 45 volts at about 20 ma . It should be connected with its positive terminal to AT13 and its negative terminal to AT12 on the detector board (see Figure 5-3). The cable connections to these terminals should be removed.

NOTE
Connections made internally for battery operation should be performed by qualified personnel.

SECTION 4

THEORY OF OPERATION

4.1 BRIDGE.

The bridge circuit in the Type 1644-A Megohm Bridge is a conventional Wheatstone bridge (see Figure 4-1). The equation of balance for this bridge is:

$$
R_{X}=\frac{R_{P} R_{S}}{R_{N}}
$$

When the balance condition is met, there will be no voltage across the detector.

Figure 4-1. Elementary schematic diagram of the bridge circuit.

In the Type 1644-A Megohm Bridge, the resistor R_{N} is the main R adjustment which is a precision wire-wound rheostat of $5.5 \mathrm{k} \Omega$. The value of R_{N} is inversely proportional to R_{X}, so that, when R_{N} is set to zero, the corresponding dial reading is infinity. The winding mandrel of this rheostat is exponentially shaped in the region between dial readings of 0.9 and 10 so that the scale in this region is logarithmic. This results in a constant angular displacement for a given percent unbalance. From 10 to ∞, the rheostat is lin-

ear which yields a simple inverse scale. The rheostat has a mechanical compensating mechanism which can be set to give a tracking accuracy far better than 1%.

The resistor R_{p} represents a fixed $500-\mathrm{k} \Omega$ resistor unless the $\Delta \mathrm{R} \%$ switch is depressed to put the $\Delta R \%$ adjustment in the circuit (see Figure 4-2). When $R 2$ is in the circuit, R_{P} may be adjusted $\pm 5 \%$ which gives a $\pm 5 \%$ change in the balance adjustment. This small adjustment is used for precise substitution measurements of small changes of resistance. The $\Delta \mathrm{R} \%$ switch, S 104 , has a spring return so that this adjustment will not be left in the circuit accidentally and thereby cause an error in the main R dial indication. The capacitor C is added to avoid a switching transient when R2 is added to, or removed from, the circuit.

The ratio-arm resistors, R_{S}, are selected by the RESISTANCE MULTIPLIER switch. The lowest range uses a wire-wound ratio-arm resistor, the next six ranges use metal film-type resistors, and the three highest ranges use high-valued carbon-film types. Because the carbon-film resistors are less stable, the three highest ranges are adjustable and may be set precisely using the calibration procedure described in paragraph 5.4.1.

Both ends of the ratio-arm resistors are switched and the unused resistors are guarded to avoid leakage resistance between terminals of switch wafers (see Figure 5-7). The two highest ratio-arm resistors actually consist of two T networks, as shown in Figure $4-3$. This is done so that more stable, lower-valued resistors may be used, trimming adjustments can be made with rheostats of reasonable values, and the bridge output impedance is small enough to minimize time-constant problems (refer to paragraph 3.3.3). These T networks are equivalent to Δ networks as explained in paragraph 3.6.3. The loading on the adjustment R_{N} is always greater than $10 \mathrm{M} \Omega$, which causes negligible error. The use of the T's does reduce the bridge sensitivity, however. The ratio between

Figure 4-3. The ratio-arm T networks for the two highest ranges.
the voltage on R_{N} and R_{S} is always $1 / 100$ th or less of the voltage on R_{P} and R_{X}. This large "bridge ratio" results in less sensitivity than would be available if it were smaller, but has the following advantages:
a. The standard is $1 / 100$ th or less of the unknown resistor and, therefore, on many ranges it is a much more stable resistor than any unknown resistor would be. For example, resistors up to $100 \mathrm{M} \Omega$ are measured using wire-wound standards, and resistors to $10 \mathrm{G} \Omega$ are measured using $1 / 4 \%$ metal-film types.
b. The voltage applied to the unknown varies by only 1% over the entire range of R_{N}. (This would be 10% on a bridge with a 10 -to- 1 ratio.)
c. Because R_{S} is smaller, several effects resulting from high bridge output impedance, such as time-constant problems in capacitance measurement, and capacitance pickup and zero shift resulting from grid current on the highest ranges, are reduced.
d. Because a much lower voltage is applied to R_{S} than to R_{X}, changes in R_{S} due to its voltage coefficient are negligible. This is particularly important when voltage coefficients are measured with the $\Delta \mathrm{R} \%$ dial.
The use of the T networks on the highest ranges can be considered as a further increase of this bridge ratio.

The bridge is mounted on a subpanel which is tied to the GUARD point which is the low side of the detector. Both UNKNOWN terminals are mounted on a plate connected to this GUARD point to avoid any leakage resistance across the UNKNOWN terminals. Leakage resistance from any point on the bridge to GUARD causes negligible effect if it is over $200 \mathrm{M} \Omega$ or so. This value is easily obtained with good insulating materials.

In use, either the GUARD point or the - UNKNOWN terminal can be tied to the panel ground. In the latter case, there may be a high voltage between the subpanel and the outside panel.

When the switch on the side of the instrument is set in the CAL position, the ratio-arm resistor normally used for the range selected is connected instead across the UNKNOWN terminals, and the ratio-arm resistor normally used two ranges lower is used as
the standard. Thus, each resistor is checked against one that is $1 / 100$ th of its value. (Refer to paragraph 5.4.1.)

4.2 DETECTOR.

The detector circuit consists of a multistage, dc-feedback amplifier, with an electrometer-tube input stage, that drives the panel meter. The over-all sensitivity of the circuit is about $100 \mu \mathrm{v} / \mathrm{mm}$.

The electrometer tube provides the high input resistance necessary to prevent loading the bridge and, thus, decreasing sensitivity. It also has a very low grid current to avoid appreciable zero shifts when the bridge output resistance is changed as the range is changed. Preceding the input tube is a two-stage RC filter to reduce the effects of pickup. This grid circuit also includes a neon tube, which, with a series resistor, limits the grid current drawn to less than 1 microampere, whatever voltage is applied.

The second stage in the amplifier is also a vacuum tube because of the high plate resistance of the first stage. Following the second stage are a commoncollector and then a common-emitter transistor stage. The output voltage is fed back through a divider to the second grid of the input stage. This grid is also used for the ZERO adjustments.

The amplifier output drives the zero-center panel meter. This meter has shaped pole pieces to give high sensitivity near a bridge null and decreased sensitivity up scale. This nonlinearity facilitates balance by eliminating the need for readjustment of the SENSITIVITY control during balance.

The supply voltage for this detector is very well regulated. The heater current in the vacuum tubes is taken from the plate supply and is, thus, also well regulated. The critical voltages on the first stage are further regulated by a low-temperature-coefficient Zener diode.

4.3 TEST-VOLTAGE SUPPLY.

The internal test voltage is regulated by a series regulator using a 2 mosfet transistors as the series element. The reference for this regulator is a Zener diode and the amplifier consists of cascaded transistor stages. The control circuit is connected to the output and has a maximum of only 10 volts across it while the remaining output voltage is dropped across a resistor.

The current through this dropping resistor is adjusted to be precisely 2 ma by the internal ADJ 100 V adjustment and the voltage across the amplifier is adjusted to 10 volts with the ADJ 10 V adjustment. The output voltage is the sum of 10 volts plus 2 ma times the dropping resistor. This resistor is used to change the test voltage. The EXTERNAL ADJ terminals shunt this resistor so that its value may be modified to get intermediate values (refer to paragraph 3.9).

This supply is current-limited to about 6 ma for ranges over 50 volts and to about 14 ma at 50 volts and lower. Shorting the supply will not damage it.

Figure 5-3. Etched-board layout for detector circuit

ELECTRICAL PARTS LIST

DETECTOR CIRCUIT PC BOARD P/N 1644-2700

ELECTRICAL PARTS LIST

CHASSIS MCUNTED PARTS

	FDES	DESCRIPTION	PART NO.	FMC	MFGR PART NUMBER
F	501	FUSE SLO-BLOW 2/10A 250 V	5330-0600	75915	313.200
F	502	FUSE SLO-BLOW 2/10A 250 V	$5330-0600$	75915	313.200
J	101	BINDING POST ASM	0938-3003	24655	0938-3003
J	102	BINOING POST ASM	0938-3022	24655	0938-3022
J	103	BINDING POST	0938-4258	24655	0938-4258
J	104	BINDING POST	0938-4258	24655	0938-4258
J	501	BINDING POST ASM	0938-3003	24655	0938-3003
J	502	BINDING POST ASM	0930-3003	24655	0938-3003
J	503	BINDING POST ASM	0938-3003	24655	0938-3003
M	201	METER	5730-1090	24655	$5730-1090$
P	501	SOCKET AND LAMP ASM	1510-1360	24655	7510-1360
P	502	SOCKET AND LAMP ASM	7510-1380	24655	7510-1380
PL	501	COKD 3WR 10A 120 V US 5. 5F THAMMER	4200-1903	24655	4200-1903
R	101	POTENTIOMETER	0433-4120	24655	0433-4120
R	103	POTENTIOMETER	0975-4060	24655	0975-4060
R	105	RES GK 9.92 OHM . 25 PCT 1W	6983-1000	24655	6983-1000
R	106	RES FLM $1000 \mathrm{HM} \mathrm{1/1JPCT} \mathrm{50PPML/2W}$	6188-0100	81349	RN 70C10008
R	107	RES FLM 1 K K $1 / 10 \mathrm{CLT}$ SOPPML/2W	6188-1100	81349	RN70C1 0018
R	108	RES FLM 10 K 1/1OPCT 50PPM $1 / 2 \mathrm{~W}$	6188-2100	81349	RN $70 C 10028$
R	109	RES FLM $100 \mathrm{~K} 1 / 10 \mathrm{PCT}$ 50PPM1/2W	6188-3100	81349	RN70C1003B
R	110	RES FLM 1M 1/4 PCT 50PPM 1/2W	6153-4100	81349	RN70C1 004 C
R	111	RES FLM 10M 1/4PCT 50PPM 2W	6195-5100	81349	RN80C 1005 C
R	112	RES FLM 95.3M 2 PCT 1/2W	6619-3408	24655	6619-3408
R	113	POT COMP SCDR 1OM OHM 2OPCT LIN	6010-2800	01121	JAIGO32S106MZ
R	114	RES FLM 95.3 M 2 PCT 1/2W	6619-3408	24655	6619-3408
R	115	RES FLM 10 M LPCT 100PPM 1/4W	6188-5100	24655	6188-5100
R	116	RES FLM 953K 1 PCT 1/8W	6250-3953	81349	RN5509533F
R	117	POT COMP SCDR 250 KOHM 10 PCT LIN	6010-2000	01121	JA1G032S254UZ
R	118	RES FILM CARBON SOOM OHM 2 PCT	$6740-1500$	63060	RX-1
R	119	RES FLM 10 M IPCT $100 \mathrm{PPM} 1 / 4 \mathrm{~W}$	6188-5100	24655	6188-5100
R	120	RES FLM $475 \mathrm{~K} 11 \mathrm{PCT} 1 / 8 \mathrm{~W}$	6250-3475	81349	RN5504753F
R	121	POT COMP SCOR 100KOHM LOPCT LIN	6010-1700	01121	JA1G032S104UZ
R	122	RES FLM 110K 1 PCT 1/2W	6450-3110	81349	RN6501103F
R	212	POTENTIOMETER	0971-3913	24655	0971-3913
R	213	POTENTIOMETER	0971-3913	24655	0971-3913
R	223	POI COMP KNOB IOK OHM IOPCT LOG	6020-0400	01121	JALNO56SIO3AL
R	517	RES FLM 249 K 1 P PCT 2 W	6590-3249	81349	RN8002493 F
R	518	RES FLM 150K 1 PCT IW	6550-3150	81349	RN75D1503F
R	519	RES FLM 49.9K 1 PCT 1/2W	6450-2499	81349	RN6504992F
R	520	RES FLM $24.9 \mathrm{~K} \quad 1$ PCI 1/4W	6350-2249	81349	RN6002492F
R	521	RES FLM 15K 1 PCT 1/8W	6250-2150	81349	RN5501502F
R	522	RES FLM 4.99K 1 PCT 1/8W	6250-1499	81349	RN5504991F
R	523	RES WW MOLDED 6.8 OHM 5 PCT 2W	6760-9685	75042	BWH 6.8 OHM 5PCT
R	524	RES WW MOLDED 6.8 OHM 5 PCT $2 W$	6760-9685	75042	BWH 6.8 OHM 5PCT
R	525	RES WW AX LEAD LOK OHM 5 PCT 5W	6660-3105	75042	AS-5 10K 5PCT
5	101	SWITCH RGTARY ASM	7890-3270	24655	7890-3270
S	102	SWITCH ROTARY ASM	7890-3280	24655	7890-3280
S	103	SWITCH ROTARY ASM	7890-3290	24655	7890-3290
S	104	SWITCH PUSHBUTTON SPDT	7810-1514	81073	7-26 B
5	501	SWIICH ROTARY ASM	7890-3300	24655	7890-3300
I	501	IRANSFORMER POWER	0345-4004	24655	0345-4004
		ELAPSED TIME INOICATOR ELAPSED TIME INOICATOR HCLDER	$\begin{aligned} & 1644-0440 \\ & 1644-0441 \end{aligned}$	$\begin{aligned} & T-0004 \\ & T-103 \end{aligned}$	
R	537 538		$\begin{aligned} & 6250-41 C 0 \\ & 6250-4150 \end{aligned}$		

NOTE: The number appearing on the foil side is not the part number. The dot on the foil at the transistor socket indicates the collector lead.

Figure 5-6. Etched-board layout for bridge circuit (P / N 1644-2721).

Complete cabinet assembly (P/N 1559-2001).

Name	GR Part No.	Mfg Code	Mfg Part No.	Fed Stock No.
Cabinet	$1644-1001$	24655	$1644-1001$	
Spacer	$4170-0700$	24655	$4170-0700$	
Pivot Stud	$4170-1000$	24655	$4170-1000$	
Screw*	$7098-0160$	24655	$7090-0160$	
Handle Assembly	$5360-1013$	24655	$5360-1013$	
Cover Assembly	$4170-0402$	24655	$4170-0402$	
Nut Plate	$4170-1350$	24655	$4170-1350$	
Screw	$7080-1000$	24655	$7080-1000$	$5305-974-0.373$
Washer	$8040-2400$	96906	MS35337-81	$5310-058-2951$
(4) Feet	$5250-1902$	24655	$5250-1902$	
(1) Foot, stop	$5260-0700$	24655	$5260-0700$	

Complete handle and mounting plate assembly (P/N 1559-2010)

*Tighten 1/4-28 screws to 45-55 in. Ibs torque.
**Bend mounting plate to give $1 / 32$ to $1 / 16$ spacing, both sides.

IET LABS, INC. Standards • Decades • Strobes • Sound Level Meters • Bridges
Formerly manufactured by
GenRad

IET LABS, INC. Standards • Decades • Strobes • Sound Level Meters • Bridges
Formerly manufactured by
GenRad

